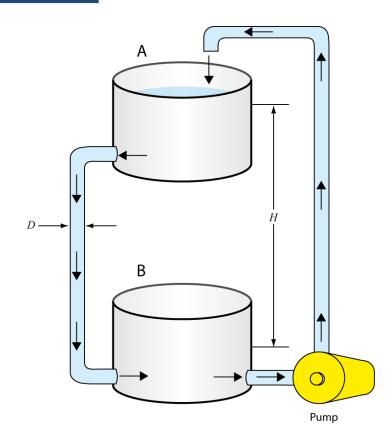

Circuits électriques (3h)

Laboratoires de physique de 1^{ère} année


Université d'Ottawa

https://uottawa.brightspace.com/d2l/home

INTRODUCTION

- Un circuit électrique est une boucle fermée composée de différents éléments traversés par un courant électrique.
- Les éléments importants sont la tension (*V*), le courant (*I*), les résistances (*R*), et les condensateurs (*C*).
- Révisez l'analogie du courant d'eau et de la pompe afin de comprendre la notion de potentiel électrique.

COURANT, POTENTIEL, et LOI D'OHM

Conductivité et résistivité:

- La conductivité est définie comme $\sigma = (l/A)C$ où l est la longueur, A est l'aire.
- La résistivité est $\rho = 1/\sigma$.
- La résistance, R, d'un élément représente sa capacité à limiter le courant.

• Loi d'Ohm : $\Delta V = RI$

- Décrit la relation entre le potentiel électrique, le courant et la résistance.
- Un graphique de la différence de potentiel en fonction du courant aura une pente égale à la résistance

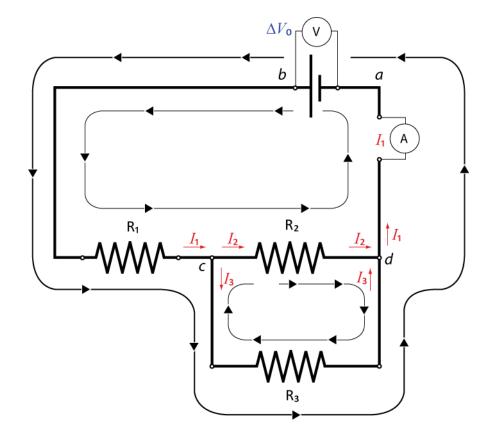
LOIS DE KIRCHOFF

- La loi des nœuds (conservation de la charge)
 - La somme des courants pénétrant dans un nœud doit être égale à la somme des courants qui en sortent.
- La loi des mailles (conservation de l'énergie)
 - La somme des variations de potentiel aux bornes des éléments d'une maille fermée doit être égale à zéro.

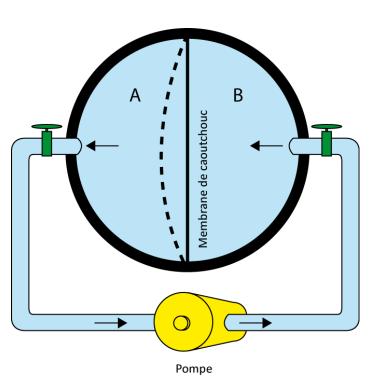
Considérons le circuit de la page suivante...

Au point c, où le courant se sépare, nous avons (loi des nœuds): $I_1 = I_2 + I_3$

$$I_1 = I_2 + I$$


Dans la boucle qui comprend R_1 et R_2 , nous acquérons un potentiel à la source de tension ΔV_0 pour ensuite perdre tout le potentiel en passant par deux résistances:

 $\Delta V_0 - \Delta V_1 - \Delta V_2 = 0$


 R_3 . Une charge test perdrait du potentiel en passant par R_2 pour ensuite en gagner à travers R_3 : $-\Delta V_2 + \Delta V_3 = 0$

$$-R_2I_2 + R_3I_3 = 0$$

EXEMPLE DE CIRCUIT

CONDENSATEURS DANS UN CIRCUIT

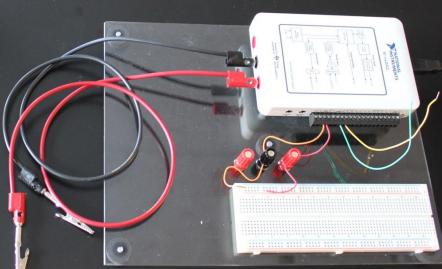
- Un condensateur est utilisé pour emmagasiner de l'énergie électrique dans un circuit.
- Une simple analogie est représentée à gauche par une sphère creuse divisée en deux volumes.
 - L'eau est déplacée du volume A vers le volume B et l'énergie élastique est emmagasinée dans la caoutchouc en raison du travail effectué sur l'eau.
 - L'énergie dans le caoutchouc est analogue à l'énergie potentielle électrique emmagasinée dans un condensateur.

OBJECTIFS

- 1) Mesurer **la valeur d'une résistance** à l'aide du code de couleur et de l'ohmmètre.
- 2) Vérifier la **loi d'Ohm's** à l'aide d'un circuit simple sur un plaque d'essai.
- 3) Étudiez des circuits simples avec des **résistances en série et en parallèle**.
- 4) Utiliser les lois de Kirchoff pour l'analyse d'un circuit.
- 5) Étudiez des circuits simples avec des **combinaisons de condensateurs**.

TUTORIELS!

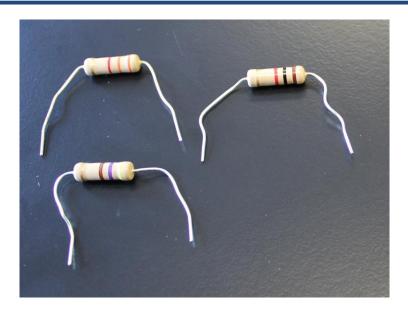
- Vous devriez avoir lu les tutoriels suivants avant votre séance de lab:
 - Montage de circuits
 - Utilisation d'un multimètre
- Ces tutoriels présentent des informations importantes à propos des manipulations que vous aurez à faire durant ce lab!

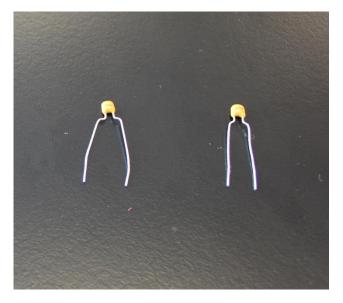


Multimètre Fluke

myDAQ:

- Multimètre
- Source de tension

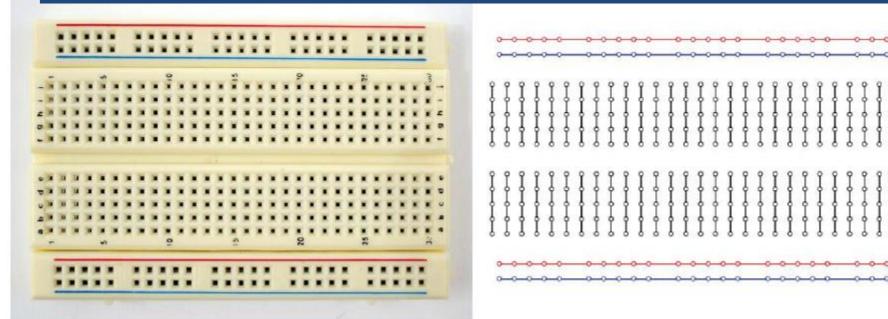




ÉQUIPEMENTS

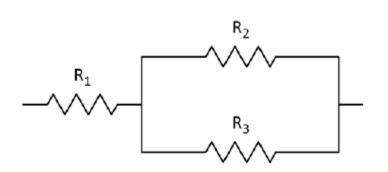
Plaque d'essai

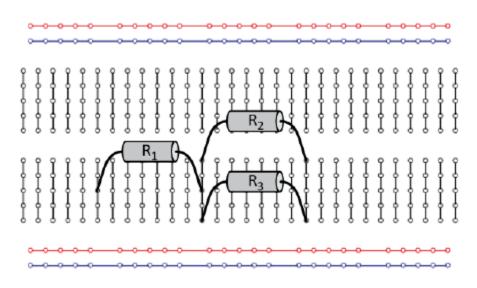
RÉSISTANCES ET CONDENSATEURS


- Les résistances ont un code de couleur qui permet d'en établir la valeur ainsi que l'incertitude.
- Les condensateurs utilisent un code de 3 chiffres les deux premiers donnent la valeur de la capacité et le troisième donne le facteur multiplicatif (le tout en pF): 543 signifie 54 x 1000 pF = 54nF.

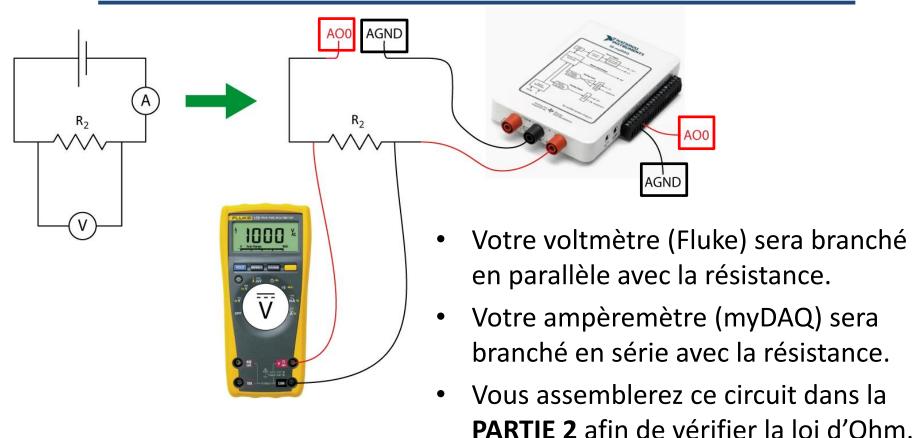
RÉSISTANCE ET CODE DE COULEUR

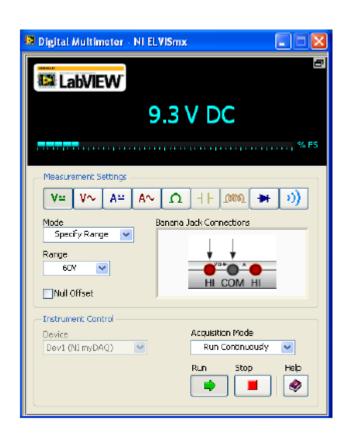
- Exemple:
 - 1- Rouge (2)
 - 2- Noir (0)
 - 3- Orange (10³)
 - 4- Or (5%)
- Valeur de résistance: $20 \times 10^3 \Omega \pm 5\%$ $(20 \pm 1) k\Omega$
- Vous utiliserez ce tableau durant la PARTIE 1.


	1 ^{ière} bande	2 ^{ième} bande	3 ^{ième} bande	4 ^{ième} bande
	1 ^{ier} chiffre significatif	2 ^{ième} chiffre significatif	Multiplicateur	Tolérance
Argent	-	-	10 ⁻²	10%
Or	-	_	10 ⁻¹	5%
Noir	-	0	1	-
Brun	1	1	10	1%
Rouge	2	2	10 ²	2%
Orange	3	3	10 ³	-
Jaune	4	4	104	-
Vert	5	5	10 ⁵	0.5%
Bleu	6	6	10 ⁶	0.25%
Violet	7	7	10 ⁷	0.1%
Gris	8	8	10 ⁸	-
Blanc	9	9	10 ⁹	-


UTILISATION DE LA PLAQUE D'ESSAI

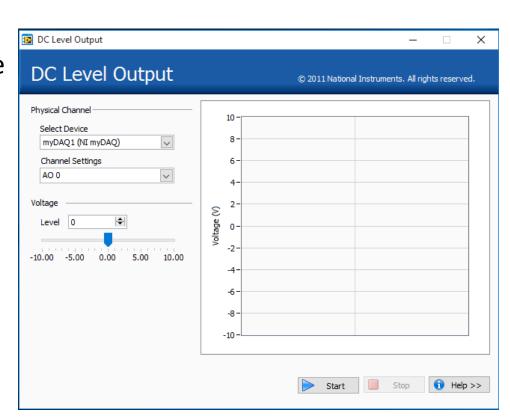
- À gauche: un exemple de plaque d'essai utilisée en lab.
- À droite: un schéma des connections cachées.

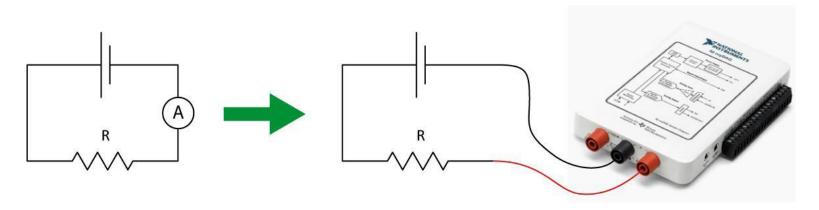

CONSTRUCTION D'UN CIRCUIT



- À gauche: le diagramme de circuit d'une combinaison de résistances en série et en parallèle.
- À droite: un exemple d'assemblage des résistances à partir des connections cachées de la plaque d'essai.

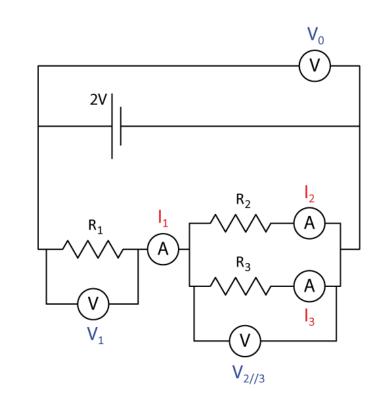
VOLTMÈTRE ET AMPÈREMÈTRE


MULTIMÈTRE myDAQ

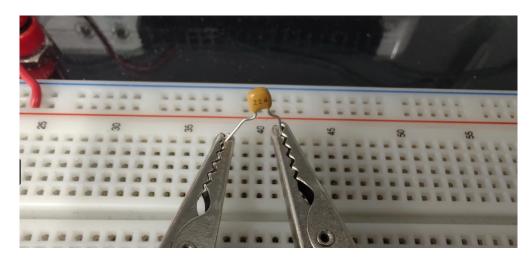

- Le programme du multimètre se trouve sur votre fond d'écran.
- Vous pouvez utiliser ce programme pour mesurer des tensions, des courants et des résistances.
- L'échelle peut être choisie manuellement par l'utilisateur ou automatiquement par le programme.
- Dépendamment de la quantité mesurée, vous pourriez avoir à changer la position des cables.

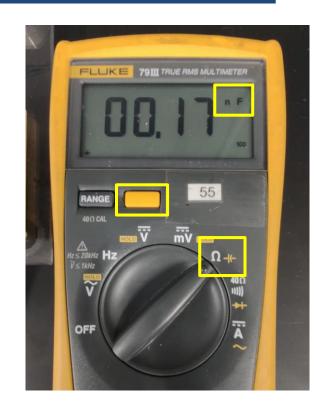
SOURCE DE TENSION DE 5 V

- Le programme pour la source de tension de 5 V (DC Level) se situe aussi sur votre fond d'écran.
- Le bon canal de sortie (myDAQ AO 0) devrez être selecter.
 Cliquez le bouton « Start ».
- Vous pouvez modifier la tension de sortie à votre guise (0 – 5 V) (cliquez « Enter »)
- La tension de sortie est présentée sur le graphique.


INCERTITUDES AVEC LES MULTIMÈTRES

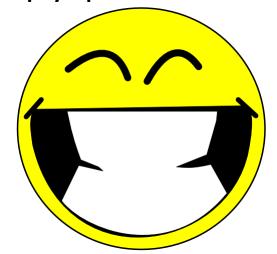
- Exemple: Vous utilisez votre myDAQ pour mesurer le courant.
 - votre ampèremètre donne 0.057 A (sur l'échelle de 1.000 A).
 - À partir des spécification du myDAQ, la précision est ± (0.5% + 2 mA).
 - La partie % correspond à un pourcentage de la valeur lue à laquelle il faut ajouter une valeur constant de 2 mA.
 - $\rightarrow \pm (0.5\% + 2 \text{ mA}) = \pm (0.005 \times 0.057 + 0.002) \text{ A} = \pm 0.002285 \text{ A}$
 - En conséquence, votre lecture finale est $I = (0.057 \pm 0.002)$ A


UN CIRCUIT AVEC PLUSIEURS RÉSISTANCES


- Dans la PARTIE 3 vous mesurerez la résistance effective de différentes combinaisons de résistances en série et en parallèle.
- Dans la PARTIE 4 vous allez vérifier les lois de Kirchoff à l'aide du circuit présenté à droite. Vous utiliserez un voltmètre (FLUKE) et un ampèremètre (myDAQ) afin de mesurer les différences de potentiel et les courant dans le circuit.

MESURER LA CAPACITÉ (PARTIE 5)

 Le multimètre Fluke peut mesurer la capacité. Choisissez la mesure de la résistance (Ω) puis appuyez sur le bouton deuxème fonction. Le multimètre passera à la mesure de la capacité en Farads (F).


NETTOYAGE

- Éteignez l'ordinateur. N'oubliez pas votre clé USB.
- Éteignez le multimètre Fluke. Désassemblez votre circuit. Replacez les résistances et les condensateurs dans votre boîte de fils.
- Recyclez vos papiers brouillons et disposez de vos déchets. Laissez votre poste de travail aussi propre que possible.
- Replacez votre moniteur, clavier et souris. SVP replacez votre chaise sous la table avant de quitter.
- Merci!

DATE DE REMISE

Ce rapport est du à la fin de la séance de laboratoire, c'est-àdire à 12h50 ou 17h20.

Vous êtes sur le point de terminer votre dernier lab de physique de la session!

